
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321816478

Estimating the Leaf Area Index of crops through the evaluation of 3D models

Conference Paper · September 2017

DOI: 10.1109/IROS.2017.8206517

CITATIONS

2
READS

699

4 authors:

Some of the authors of this publication are also working on these related projects:

Video processing View project

Computer Vision Methods for Intelligent Transportation Systems View project

Dimitris Zermas

Sentera, INC, Minneapolis MN, United States

13 PUBLICATIONS   64 CITATIONS   

SEE PROFILE

Vassilios Morellas

University of Minnesota Twin Cities

81 PUBLICATIONS   1,005 CITATIONS   

SEE PROFILE

David J. Mulla

University of Minnesota Twin Cities

236 PUBLICATIONS   5,976 CITATIONS   

SEE PROFILE

Nikolaos Papanikolopoulos

University of Minnesota Twin Cities

406 PUBLICATIONS   7,978 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Dimitris Zermas on 02 January 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/321816478_Estimating_the_Leaf_Area_Index_of_crops_through_the_evaluation_of_3D_models?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321816478_Estimating_the_Leaf_Area_Index_of_crops_through_the_evaluation_of_3D_models?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Video-processing-2?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Computer-Vision-Methods-for-Intelligent-Transportation-Systems?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Zermas?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Zermas?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Zermas?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilios_Morellas?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilios_Morellas?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilios_Morellas?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Mulla?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Mulla?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Mulla?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolaos_Papanikolopoulos?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolaos_Papanikolopoulos?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Minnesota_Twin_Cities2?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolaos_Papanikolopoulos?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitris_Zermas?enrichId=rgreq-9b4b30d1def0447beb0f316f7861e55d-XXX&enrichSource=Y292ZXJQYWdlOzMyMTgxNjQ3ODtBUzo1NzgzNTYxNzc1MzQ5NzlAMTUxNDkwMjI2NjUzMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Estimating the Leaf Area Index of Crops
Through the Evaluation of 3D Models

Dimitris Zermas1, Vassilios Morellas1,
David Mulla2 and Nikolaos Papanikolopoulos1

1Department of Computer Science and Engineering, University of Minnesota
2Department of Soil, Water and Climate, University of Minnesota

Abstract— Financial and social elements of modern societies
are closely connected to the cultivation of corn. Due to the
massive production of corn, deficiencies during the cultivation
process directly translate to major financial losses. The early
detection and treatment of crops deficiencies is thus a task
of great significance. Towards an automated health condition
assessment, this study introduces a scheme for the computation
of plant health indices. Based on the 3D reconstruction of small
batches of corn plants, an alternative to existing cumbersome
Leaf Area Index (LAI) estimation methodologies is presented.
The use of 3D models provides an elevated information content,
when compared to planar methods, mainly due to the reduced
loss attributed to leaf occlusions. High resolution images of
corn stalks are collected and used to obtain 3D models of
plants of interest. Based on the extracted 3D point clouds, an
accurate calculation of the Leaf Area Index (LAI) of the plants
is performed. An experimental validation (using artificially
made corn plants used as ground truth of the LAI estimation),
emulating real world scenarios, supports the efficacy of the
proposed methodology. The conclusions of this work, suggest a
fully automated scheme for information gathering in modern
farms capable of replacing current labor intensive procedures,
thus greatly impacting the timely detection of crop deficiencies.

I. INTRODUCTION

The cultivation of corn crops plays a key role in the
financial and social aspects of modern societies. Preci-
sion Agriculture (PA) schemes involving aerial and ground
surveillance systems, have been developed in an effort to
optimize the yield of corn fields; such approaches are mainly
concerned with high altitude scanning of the fields by mul-
tispectral cameras and manual scanning of a limited number
of plants with specialized and expensive sensors. Recent
advancements in the area of Computer Vision can pave the
way for new and robust solutions targeting PA problems via
a thoughtful and in-context transfer of cutting edge vision
methodologies.

A review of the existing literature in PA, as presented
in Section II, indicates the need for accurate and frequent
biomass estimation. For agricultural applications the biomass
is a powerful index due to its immediate connection with
the crops’ health condition and growth state. An accurate
model of the corn’s canopy can reveal important information
regarding the state of corn crops and provide feedback to
growth models.

In contrast to existing invasive methods for accurate
biomass calculation that rely on plant deconstruction, their

Fig. 1: Example of a 3D model reconstructed by imagery. Six artificial corn
stalks are used to automatically extract the biomass without the presence of
humans.

non-invasive alternatives are preferred in commercial appli-
cations since they leave the crops intact. These state of the art
solutions approximate the real LAI with models that measure
the light reflectance differences above and below the canopy
[1]. The average of several such measurements provides
a single result that characterizes a wide area. The spatial
sparsity of these methods in combination with the use of
cumbersome sensors which are handled by a human impose
significant constrains in the sampling process; collecting
measurements for a large number of points over the field can
be prohibitive, costly and inaccurate. An automated method-
ology for providing detailed and reliable biomass information
from 3D models of corn canopies would directly address the
needs of both researchers and companies interested in corn
development.

Previous work by Zermas et al. [2] presented a methodol-
ogy for identifying Nitrogen deficiencies in individual corn
plants during the early stages of their development, using
RGB images taken from a UAV. Further experimentation
suggested that depending on the soil type, such deficiencies
may show late, in which case the damage to the plant
is irreversible. On the other hand, the LAI information
can be used to detect plant stress without such limitations,



Fig. 2: The growth stages of corn plants are characterized by a letter
followed by a number (e.g. “V5”). The letter “V” symbolizes the vegetative
stage of the corn, while the number shows how many leaves have grown a
visible collar around the stem [3]. Stage VT comes when the last branch of
the tassel is completely visible, and the stages characterized by “R” indicate
the reproductive stages when the kernel develops and matures.

making it a great candidate for plant pathology assessment.
Unfortunately, computing the LAI is nearly impossible with
the standard 2D visualization, because occlusions can not be
alleviated. To address this drawback, this paper proposes a
methodology capable of estimating the LAI of a group of
plants using their 3D models. When a 3D model such as in
Fig. 1 is accessible, the surface of all of its leaves should
be observable, overcoming the leaf occlusions and resulting
to a more accurate volumetric information about the plants’
biomass.

The proposed methodology is focusing on maize of growth
stages between “V5” and “V10” [3], when the plants are
still susceptible to treatment and introduces the first attempt
for a low-cost, mobile, and easily deployable solution for
automated computation of the plant’s LAI. For the reader’s
education, figure 2 demonstrates the different growth stages
of corn plants. Initially, high resolution images of the same
group of corn plants are collected and a dense 3D model
of the canopy is created. The proposed LAI estimation
methodology is applied next, yielding information about the
health condition of the reconstructed area.

In Section II related work is presented, while Section III
describes in more detail the technical aspects of this work,
followed by a set of experimental validations summarized in
Section IV. In order to assess the accuracy of the proposed
LAI estimation procedure, we intentionally experimented
with artificial corn plants whose LAI was measured and used
as the ground truth. Finally, Section V aggregates the results
of this paper and suggests topics for future work.

II. LITERATURE REVIEW

In the agriculture literature a common measure that indi-
cates the biomass of the plant is the LAI. This dimensionless
quantity is defined as the one-sided green leaf area per unit
ground surface area [4]. This rather vague definition can
receive several practical definitions depending on the plant
species, the leaf shape and the particular application [5].

For broadleaf plants such as corn, LAI can be computed
either directly by destructive sampling of canopy leaves,
or indirectly by approximate techniques that involve 2-D
imaging and solar radiation measurements above and below
the canopy. Chen et al. [6] and Bréda [7] are presenting and
comparing a variety of methods of both direct and indirect
LAI estimation techniques. Direct methodologies produce
accurate results but are time consuming and destroy the
plants. On the other hand, estimating the LAI based on the
existing indirect methodologies requires human presence for
the collection of data [8], and may result in estimation errors
of up to 25% because of occlusions and cluttering introduced
by the dense canopies [9].

Although the need for a detailed 3D model of the corn
canopy was apparent even in the early stages of PA ([10]
and [11]), the 3D reconstruction applications in PA are
limited and targeted mainly towards the estimation of plant
biometrics. Most relative is the work of Wang et al. [12]
who are presenting a 3D reconstruction technique for a
single corn plant based on the shape of the leaves’ outline
while making several assumptions in order to acquire a very
accurate 3D model. Dong et al.[13] and Carlone et al. [14]
propose a model for the estimation of the plant’s height
over time. Recently, Qu et al.[15] presented a real time 3D
reconstruction sensor for various agricultural applications,
and Kjaer et al. [16] have been experimenting with 3D
reconstruction from near-infrared 3D scanners in order to
assess the nutrient state of plants in controlled environments.

Although targeting barley instead of corn, the importance
of biomass in plant growth is being stressed by the work of
Aasen et al. [17], Bendig et al. [18], and Tilly et al. [19].
The most notable difference of these publications versus the
current work is the scale in which the problem is approached.
Their solution creates 3D models of a large part of the farm,
while ours targets a small group of plants providing more
detailed information of individual plants and leaves.This
detailed and small scale 3D plant reconstruction is important
as we deploy this model to measure the leaf area with a
method discussed in the upcoming sections.

Other notable publications regarding 3D reconstruction
and measurement of plants include Biskup et al. [20], that use
stereo vision to get geometric characteristics of the canopy,
and Klose et al. [21], who discuss the usability of Time-
of-Flight (ToF) cameras in PA. Lastly, Alenya et al. [22]
also utilize ToF sensors as a complement to RGB cameras
to gain access to broader range of measurements. In these
last three cases it is noted that experiments are conducted in
completely controlled indoor environments.

III. METHODOLOGY

The core methodology for the computation of LAI as
presented in this section requires a dense 3D reconstruction
of a group of plants. This can be obtained by capturing
high resolution images of the targeted group while moving
in a circular fashion as seen in Fig. 3 and employing a
3D reconstruction toolbox such as [23]. Obtaining the 3D
model decoupled from the point cloud processing does not



Fig. 3: The sparse reconstruction resulting from the VisualSFM software.
In this non-limiting example, several high resolution images were taken
using a handheld camera while moving in a circular fashion around six
artificial corn stalks.

Fig. 4: A simple example to explain the definition of LAI. The total area
of the green part of the sphere symbolizes the area of the green leaves and
is 2πr2 (r is the radius), while the orthogonally projected area is a circle
of area πr2. Therefore, LAI = 2πr2/πr2 = 2.

impose any platform constraints and only requires an RGB
sensor and sufficient computation capabilities. It is possible
to acquire the necessary imagery through handheld or UAV
mounted cameras.

A. Interpreting the 3D Reconstruction

Once the 3D model is obtained, an assessment on the
condition of the canopy is made. Initially, the soil plane is
detected and removed using RANdom SAmple Consensus
(RANSAC) [24] to estimate the coefficients of the ground
plane. This results in a point cloud P ∈ R3 that consists
only of points belonging to the plants which is then used to
provide volumetric information.

A popular interpretation of the LAI when dealing with
canopy imaging considers the ratio of the total area of the
green leaves to the area of the green leaves when they are
projected on the ground:

LAI = AGL/APGL, (1)

with AGL denoting the Area of the Green Leaves and
APGL the Area of the Projected Green Leaves. This in-
terpretation of the LAI index receives values ≥ 1 since
APGL is generally smaller than AGL considering the various
occlusions amongst leaves [25].

In order to estimate the LAI based on its original definition
as provided by Eq. 1, we need to compute the two quantities
that correspond to i) the one-sided green leaf area (AGL) and
ii) the unit ground surface area (APGL).

B. Leaf Segmentation

At first, the computation of AGL requires the segmentation
of each one of the leaves of the depicted plants. For the
growth stage of the plants we are interested in (“V5” to
“V10”), the canopy is not particularly dense and most of the
individual leaves are observable during the 3D reconstruc-
tion.

Still, occlusions and leaf intersections are present leading
to a non-trivial segmentation process which concludes in
two steps. Initially, a clustering technique such as the eu-
clidean cluster extraction combined with a statistical outlier
removal [26] is employed to break down the point cloud P
into N clusters of 3D points Pi ⊂ P with i = 1, . . . , N ,
each containing one or more single leaves, with examples
seen in Fig. 5.

The second step of the segmentation needs to iterate over
all N clusters, leave the single leaf clusters intact, and break
apart the clusters that contain more than one leaf. For this
purpose a 3D skeletonization technique is employed [27]
which acts on each point cluster Pi and delivers a skeleton
Si comprised from a set of connected nodes s ⊂ Si. Each
node is the centroid of a collection of neighboring 3D points
and acts as their representative.

The nodes capture the topology of the leaves, which
is used by our proposed algorithm to achieve a refined
segmentation. In particular, we assume only three types of
nodes s; namely the endpoint nodes, the intersection nodes,
and the standard nodes. Endpoints are nodes with only one
immediate neighbor, while intersections have more than two
immediate neighbors and standard points have exactly two.

Under this definition, we assume that any endpoint node
signifies one end of a single leaf and that starting from
an endpoint, a set of neighboring standard and intersection
nodes in a smooth trajectory forms the midrib of the leaf.
Referring to Fig. 6, one can see the nodes s1, . . . , s10 and
s11, . . . , s17 forming the two leaf midribs while both curves
start from an endpoint. Although we assume the midribs to
start from an endpoint, it is possible for them to end at any
node and the decision is based on the smoothness of the
curve.

In order to define a criterion for the smoothness of a curve,
we treat the nodes of a the skeleton as measurements of the
trajectory of a physical object in 3D and employ a Kalman
filter to decide whether a node belongs to the midrib or



(a) Example of single leaf cluster. (b) Example of two intersecting
leaves in the same initial cluster.

(c) Example of two touching leaves
in the same initial cluster.

(d) Example of four leaves at the
top of a single plant in the same
initial cluster.

Fig. 5: Example of clusters produced by the initial euclidean clustering
step. Cases like (a) do not need extra refinement since the initial cluster
represents a single leaf. In the contrary, cases like (b), (c), and (d) need to
be further refined to produce single leaf clusters.

Fig. 6: Left: Example of a 3D skeleton of two overlapping leaves. Three
endpoint nodes (s1, s11, and s17), one intersection node (s10), and several
standard nodes (s2−s9, s12, and s13−s16) are visible. Right: Example of
the SKF algorithm starting from node s1. Kalman filtering is used iteratively
to make decisions on the nodes that belong to the midrib. The red circles
represent estimates on the position of the nodes xkest that have been found
to be close to their respective node-measurements (green dots). The red
cross presents the position estimate that is far away from its respective
measurements (yellow stars), thus signifying that s10 is an end-node for
the particular leaf.

not. This segmentation refinement process we call Skeleton
Kalman Filtering (SKF). Specifically, we employ the model:

xk = xk−1 + vk−1∆t+
1

2
α∆t2 (2)

vk = vk−1 + α∆t

which is transformed, as used in Kalman filtering, in the
matrix form:

(
xk
vk

)
=

(
I3 I3∆t
03 I3

)
xk−1 +

(
∆t2

2
∆t

)
α (3)

with xk = [x, y, z]T , vk = [ẋ, ẏ, ż]T , ∆t = 1, α = 0.01,
I3 ∈ R3x3 identity matrix, and 03 ∈ R3x3 zero matrix. At
the same time, the measurements zk = [zkx, zky, zkz]T take
the form:

zk =
(
I3|03

)
xk−1, (4)

and the model and measurement uncertainty matrices Q
and R respectively are:

Q =

(
I3

∆t4

4 I3
∆t3

2

I3
∆t3

2 I3∆t2

)
, R =

(
I3σ

2
)
, (5)

with σ = 0.1.
The position part xk of the state vector is initialized with

the first endpoint of the midrib, velocity vk = [0, 0, 0]T

and the Kalman filter is applied iteratively. At each iteration
the estimated position xkest is compared with the next
neighboring node(s) (that act as measurements zk) and based
on a distance threshold the node is considered part or the end
of the midrib.

||xkest − zk||2 < dthreshold. (6)

As seen in the right image of Fig. 6, the skeleton branch
that initiates from the starting endpoint s1 applies Kalman
filtering and adds the standard points up to s10 to the midrib.
The filter estimates that the next node s11 should be at
the red cross for the smoothness of the midrib to persist.
Nevertheless, the actual neighboring nodes (yellow stars) are
not consistent with the estimate meaning that the intersection
node s10 signifies the end of the leaf.

C. Leaf Area Computation

Even with the refinement step of SKF, significant problems
manifest with the creation of a 3D point cloud due to noisy
measurements and textureless leaf areas. In particular, noise
corrupted points that were originally part of the actual leaf
surface are reconstructed away from it and are hard to detect
and correct. Furthermore, lack of texture generates large
uneven holes in the central parts of the leaves that require
supervised hole filling algorithms [28] in order to create a
meaningful surface for the area computation.

A computationally efficient algorithm that produces sat-
isfactory results overcoming the aforementioned limitations
is the Self-Organized Map (SOM) [29]. Utilizing two fully
connected layers of a neural network, SOM is an unsuper-
vised algorithm which creates a grid that organizes itself
to capture the topology of the provided data. The SOM is
undertaking an automatic smoothing of data by fitting this
grid of points according to the density of the recorded data,
thus minimizing fitting error in densely reconstructed areas.
The grid, also known as lattice, provides flexibility in that
its granularity is controlled at will by the user. Altering this



Fig. 7: The Self-Organized-Map (SOM) lattice (left) is adapting to the
surface of the leaf (right) capturing the topology of the reconstructed points.
Left: Each square in the lattice receives an identification label ru and its
four vertices (larger dots) are numbered in a clockwise fashion starting
from the top left v = 1, 2, 3, or 4. This way, the computation of the
area through the two triangles (a and b) is feasible. Right: The lattice
assumes the reconstructed points’ (small dots) topology. On a 3D surface,
the SOM lattice resembles a membrane that stretches around the 3D points.
An example of the sixth polygon’s indeces is visible inside the squares.

Fig. 8: The experimental setup involved six different corn plant configu-
rations with increasing complexity. The numbers inside the squares depict
the experiment number and the numbers in the circles represent the plant
identification. One to six plants were used in realistic scenarios keeping
distances between rows at 22 inches, a standard corn row distance used at
the United States farmlands.

parameter can achieve higher execution speed so that the
estimation of the LAI is performed without affecting the
accuracy to undesirable levels.

In our case, the provided data is a point cloud of a leaf
and the SOM is used to express the surface of the leaf so that
the area computation is feasible. When the SOM converges
to its final form (Figure 9c), several four-edged polygons
with known vertices cover the surface of the leaf and are
identified as ru,v , with u = 1, . . . ,K number of polygons
and v = 1, 2, 3, or 4 the number of the vertex in a clockwise
order (Fig. 7). Each polygon is then broken down into two

triangles by indexing its four vertices v in order 1→ 2→ 3
(triangle a) and 3 → 4 → 1 (triangle b). The total area of
the surface can be approximated by adding the areas of all
the triangles. Finally, the total green leaves area (AGL) is the
summation of the areas of the individual leaf clusters.
APGL can be computed in a simpler manner. First, all the

vertices of the SOM lattice are treated as 3D points and are
projected on the ground with the projection matrix:

T = I3 − nnT ∈ R3x3, (7)

with I3 ∈ R3x3 the identity matrix and n ∈ R3 the
normal vector of the ground plane. The projected points form
a concave two dimensional polygon in 3D which is used
to create a mesh of triangles that occupy the desired area.
An occupancy grid with known cell size is generated and
overlayed ontop of the mesh to determine how many cells
are occupied. Again, adding the area of all the occupied cells
provides an estimation of APGL.

The 3D reconstruction resulting from an SfM algorithm
is up-to-scale equivalent to the actual scene, which means
that the computed AGL is not directly comparable to the
groundtruth measurements. Our solution in determining the
scaling factor s of the reconstruction in order to verify the
correctness of our computations is to compare the height
of the artificial corn plants hreal against the height of the
reconstructed corn plants hreconstructed, and use their ratio
as the scaling factor for the whole point cloud:

s =
hreal

hreconstructed
. (8)

IV. EXPERIMENTAL RESULTS

The experimental results section illustrates the sequence
of steps for the computation of the leaf area index on the
produced point cloud.

A. Experimental Setup

The reproducibility of the experiments and the accuracy in
the collection of the ground truth measurements contributed
to our decision to validate our LAI estimation algorithm on
artificial corn stalks that are based on real corn models at a
“V6” growth stage (the number of developed collars on the
stem is 6).

A total number of six artificial plants with similar biomet-
rics were used and the areas of their leaves was approximated
by the formula: L ∗ W ∗ k, with L the length of the leaf
from the stem to the tip, W the maximum width, and the
constant k = 0.75 was selected based on literature as a viable
approximation of the leaf area [30].

The 3D reconstructions were created offline using the
VisualSFM toolbox [23] with the number of input images
varying from 18 to 24 and the images were collected with
a handheld Olympus TG-4 camera of 1440x1920 pixel
resolution. A sample sparse reconstruction output from the
VisualSFM toolbox can be seen in Fig. 3, while dense
reconstruction results of real and artificial corn produced via



(a) t = 200 (b) t = 1000 (c) t = 6000

Fig. 9: Progression of the Self-Organized Map. The initial lattice (red grid) is iteratively trying to capture the topology of the leaf (blue dots represent
the 3D points of the leaf). The outliers are ignored and the resulting surface is resembling the real leaf despite the reconstruction errors. Top row is a
top-down view of the leaf, bottom row is a lateral view. t symbolizes the time step in the algorithmic process. In MatLab the average processing time of
one leaf is 0.52 seconds.

Fig. 10: Left: One of the images use for the construction of the 3D model
visible on the right. Right: The dense 3D reconstruction of real corn plants
in the field is provided as reference for visual comparison with the artificial
corn.

the use of the PMVS tool [31] are seen in the Figures 1, 10
and 12b.

B. Interpreting the 3D Reconstruction

We are considering six different configurations of artificial
corn stalks with increasing complexity which, as seen in
Fig. 8, try to mimic realistic scenarios and assist in verifying
the sensibility of the proposed method. In experiment #1
a single plant is reconstructed showing how the algorithm
behaves with minimal occlusion. The same goes for ex-
periment #2 where non-overlapping leaves are considered
in a standard 22 inch distance between two corn rows.
Experiments #3 through #6 show cases of severe overlap
and occlusion with increasing number of plants and #5
shows a case where the row is missing a plant due to
seeding error. The results of the preprocessing methodology
described in section III-A are depicted step by step for the
most complex scenario (experiment #6) in Fig. 12. A lateral
view of the six corn stalks can be seen in 12(a), while the 3D
reconstruction is visible in 12(b). In 12(c), the leaves have
been segmented using the SKF methodology. Lastly, 12(d)
shows the projection of the two corn stalks of the ground.

Results on the algorithm that estimates the area of the
leaves is present in Figure 9. The figure shows the expansion

of the network over several iterations until it converges. Two
viewpoints are provided to clarify the progress steps. The
SOM algorithm has proven to be particularly robust and
manages to adapt to the data providing a leaf-like shape and
overcoming limitations such as noise 13(a), small number of
points 13(b) and sparse reconstruction 13(c).

No. of Experiment

C
or

n
St

al
k

ID

1 2 3 4 5 6
a 0.1198 0.1062 0.1205 0.1392 0.1328 0.1216
b - 0.1241 0.1137 0.1361 0.1294 0.1090
c - - 0.1251 0.1103 0.1405 0.1377
d - - - 0.0989 0.1002 0.1150
e - - - - 0.0975 0.1281
f - - - - - 0.1000
T 0.1198 0.2303 0.3593 0.4845 0.6004 0.7114

GT 0.1119 0.2238 0.3357 0.4476 0.5595 0.6714
error 6.59% 2.82% 6.57% 7.62% 6.81% 5.62%
LAI 1.6954 1.6667 2.6882 2.6994 1.8296 2.7205

TABLE I: Leaf area estimation for each one of the plants in all six
experimental setups. The mean ground truth total leaf area for a single
artificial plant is AGL = 0.1119. Since all six artificial plants are
industrially manufactured, we assume they share approximately the same
total leaf area. The variable T represents the estimated total leaf area, which
is a column-wise sum of each experiment and GT is the groundtruth total
area of the reconstructed plants. The LAI is computed for each experiment
and presented in the last row.

The validity of the algorithm is assessed by comparing the
computed AGL scaled using Eq. 8, against the groundtruthed
total leaf area (AGL) measurements. In Table I, each column
represents one of the six experiments and the rows hold the
estimated leaf area information for each plant. The total leaf
area is the sum of the individual plants’ leaf area and the
accuracy of the methodology is validated by the relative error
which is computed as:

error =
abs(T −GT )

GT
. (9)

The estimated LAI is presented last for completeness
despite the lack of means to compute the groundtruthed
projected leaf area (APGL).

Further, in Fig. 11 we present some examples of single
leaf area estimation taken from the most complex exper-
iment #6. An image of the leaf is placed next to its 3D



Fig. 11: Several examples of initial images along with their reconstructed
pairs are presented. In Table II We provide the estimated area for each leaf
along with its groundtruth (GT) value.

Leaf # 1 2 3 4 5
Area 0.0204 0.0062 0.0122 0.0031 0.0320
GT 0.0168 0.0055 0.0051 0.0086 0.0261

Leaf # 6 7 8 9 10
Area 0.0228 0.0210 0.0190 0.0189 0.0295
GT 0.0247 0.0247 0.0165 0.0165 0.0261

TABLE II: This table accumulates the area estimation and groundtruth
(GT) of the leaf instances seen in Fig. 11. An interesting observation
regarding the leaves #3 and #4 can be made regarding the accuracy of
the area estimation. These leaves are too close for the 3D skeletonization
algorithm to separate them correctly resulting to one of the two leaves
dominating over the other. The summation of their respective estimated
areas closely follows the groundtruth.

reconstruction followed by the estimated and groundtruthed
values of its area presented in Table II. These results support
our proposed methodology and suggest that we may aim for
a generalizable version that can be utilized as a tool for the
estimation of LAI and the replacement of outdated and labor
intensive solutions.

C. Limitations

The proposed methodology depends heavily on the quality
of the 3D reconstruction for the segmentation of individual
leaves. In the experiments #5 and #6 the density of the
canopy occludes the lower leaves resulting in the partial
reconstruction of one leaf in both cases. This result does
not significantly affect the total area and LAI estimation but
indicates some of the limitations of the pipeline.

A partial 3D reconstruction affects the SKF segmentation
step which utilizes the 3D skeletonization to separate the
independent leaves. When the leaf surface has a large hole

(a) Lateral view of six artificial
corn stalks.

(b) Reconstruction of six artificial
corn stalks.

(c) The clusters created after the
euclidean distance based segmenta-
tion and the SKF based refinement
step. Each color is a different clus-
ter.

(d) The projection of the re-
constructed points on the ground
plane. The overlap between the
leaves is apparent and represents
the occlusions among the leaves.

Fig. 12: Steps for the point cloud preprocessing. Several images similar
to (a) create a 3D point cloud (b). The segmented leaves (c) as well as the
projection (d) are used to compute the nominator (AGL) and denominator
(APGL) of the LAI.

due to lack of texture in the reconstruction process, the
skeleton is forced to create unnecessary branches which may
end up in the over-segmentation of the leaf. This problem
is partially addressed by the flexibility of the SOM but
introduces inaccuracies to the final area computation.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have shown the efficacy of our proposed
methodology for the estimation of the LAI of corn plants
when their detailed 3D models are provided. Our experiments
have shown the feasibility to acquire good enough 3D recon-
struction results in a real world and laboratory environment,
and have validated the proposed methodology on artificial
specimens with known biometrics (Table I and II). Those
findings support the importance and applicability of such
techniques to real world PA challenges. The obtained results
act as a proof of concept for the introduction of a new
interpretation to a classic biomass index definition, and
show the automation capabilities that field monitoring can
achieve through the use of state of the art Computer Vision
techniques.

Future work requires the validation of the LAI estimation
algorithm over a dataset with real plants in an outdoor
environment for the verification of its consistency. Finally,
since the operation of the LAI estimation methodology
has been established, the introduction of a pipeline for the
groundtruthing and 3D reconstruction of real corn plants will
be beneficial towards the creation of an open access dataset.



(a) (b) (c)

Fig. 13: Extreme cases of reconstructed leaves validate that the algorithm performs satisfactorily. In (a), a small number of images was used for the
reconstruction, resulting in a noisy point cloud. The reconstructed leaf in (b) is small and further away from the camera, therefore its 3D points are fewer
and sparse. A significant part of the leaf has not been reconstructed in (c).
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